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Abstract
The present article provides an overview of the role of oxidative stress in the development and 
progression of liver cancer (LC). Oxidative stress ensues when the balance between the production 
of reactive oxygen species (ROS) and reactive nitrogen species overrides the antioxidant defense of 
the target cell and body fails in detoxifying their harmful effects. Therefore, the interaction of these 
reactive species with critical cellular macromolecules may cause oxidative damage. Moreover, ROS 
may interact with cellular components including proteins, lipids, and DNAs, which results in altered 
target cell function. The accumulation of oxidative damage products has been implicated in both 
acute and chronic cell injury suggesting a possible role in the pathogenesis of Parkinson’s disease, 
Alzheimer’s disease, atherosclerosis, heart failure, myocardial infarction, and cancers. Alcoholism, 
viral agents, obesity, and smoking increase the occurrence of oxidative stress and consequently the 
risk of LC.
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Introduction
Oxidative stress occurs through 
overproduction of several types of reactive 
species in the body or as a result of a 
decrease in their detoxification mechanisms. 
These species are called prooxidants 
including reactive oxygen species (ROS) 
and reactive nitrogen species (RNS). 
There are many natural sources of 
oxidative stress, for example, exposure 
to environmental oxidants, toxins such 
as heavy metals, ionizing and ultraviolet 
irradiation, heat shock, and inflammation.[1] 
High levels of ROS and RNS exert a toxic 
effect on intracellular and extracellular 
macromolecules (e.g., DNA, proteins, 
and lipid membrane), thus leading to the 
oxidative damage in different parts of cell.[2]

ROS are chemically reactive components 
containing oxygen which are a natural 
by‑product of aerobic metabolism cycle.[3] 
ROS can be supplied through endogenous 
and/or exogenous resources.[4] Exogenous 
ROS can be produced either by direct or 
indirect mechanisms in confronting with 
drugs, hormones, and other xenobiotic 
chemicals.[5,6]

ROS include a number of species such 
as superoxide anion (O2

−), hydroxyl, and 
peroxyl radicals and certain nonradicals 
such as singlet oxygen and hydrogen 

peroxide (H2O2) that can be easily 
converted into radicals. Some species 
including O2

− and H2O2 are constantly 
produced during metabolic processes in 
all living cells. ROS can be regarded as 
a trigger of genetic mutations as well as 
chromosomal alterations, thus contributing 
to cancer development through various 
steps of carcinogenesis.[7] In physiological 
conditions, cellular ROS production is 
counterbalanced by the action of antioxidant 
enzymes and other redox molecules. 
The balance between O2

− production and 
elimination is important for maintaining 
proper cellular redox state. A moderate 
increase in ROS can stimulate cell growth 
and proliferation.[1,2]

Besides their harmful effects in clinical 
conditions, the importance of ROS and 
RNS as mediators in different cellular 
processes and cell signaling pathways 
is apparent.[8,9] Similarly, RNS include 
reactive species such as peroxynitrite, 
nitrogen dioxide, and nitric oxide (•NO). 
Like ROS, RNS are derived from the 
interactions of biologically generated free 
reactive species to form more persistent 
species resulting in multiple biological 
effects.[10‑12] Because of their potential 
harmful effects, excessive ROS and RNS 
must be eliminated quickly from the cell’s 
environment. Antioxidants are the first line 
of defense against free radical damage 
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and are critical for maintaining optimum health. The body 
has developed several antioxidant systems to deal with 
the overproduction of pro‑oxidants. These systems can be 
divided into enzymatic and nonenzymatic. The enzymatic 
system includes O2

− dismutase, catalase, glutathione (GSH) 
peroxidase, and GSH reductase. None‑enzymatic system is 
being provided by nutrient‑derived antioxidants including 
minerals (Se, Mn, Cu, and Zn), vitamins (A, C, and E), 
and other compounds (GSH, flavonoids, bilirubin, uric 
acid, etc.).[13,14] Alternatively, oxidative stress occurs in 
concurrent with the shortage of antioxidant reservoir of 
the cell. Antioxidant levels provided by either enzymatic 
or none‑enzymatic systems can be decreased through 
several mechanisms including modification in gene 
expression, a decrease in their uptake through nutrition, or 
overproduction of ROS in the cells.[15,16]

Acute oxidative injury as a result of above‑mentioned 
events may produce selective cell death and eventually a 
compensatory increase in cell proliferation. This stimulus 
may result in the formation of new preneoplastic cells. 
Similarly, fatal acute oxidative injury may produce 
unrepaired DNA damage, formation of new mutations 
and potentially, newly engendered cells. In contrast, the 
sustained chronic oxidative injury may lead to normal 
cellular growth under the control of nonfatal modification 
mechanisms.[17] Moreover, the role of reactive species 
in the etiology of cancer is supported by epidemiologic 
studies. These epidemiologic studies specifically illustrated 
the protective role for antioxidants against cancer 
development.[18,19]

Numerous studies on the liver carcinogens showed a 
dose‑dependent decrease in liver antioxidant concentrations 
along with an increase in ROS formation and oxidative 
damage. This increase in oxidative stress correlated with an 
increase in hepatocytes DNA synthesis.

The liver is one of the largest organs in the human body 
and the major site for metabolism and excretion. It has a 
wide range of functions, including detoxification, protein 
synthesis, and production of pivotal biochemicals necessary 
for digestion cycle.[20] Liver diseases have become one 
of the major causes of morbidity and mortality of human 
beings worldwide, and liver cancers (LCs) seem to be 
the worst.[21] To an extent, LC ranks fifth in frequency 
worldwide.[22]

Liver can be affected by primary LC, which primarily 
arises in the liver, or can emerge following metastasis 
of cancer cells from other parts of the body to the liver. 
Because the liver is made up of several different types of 
cells, several types of tumors can form there. Hepatocellular 
carcinoma (HCC) is among the most common primary 
LCs, which is characterized by hepatocytes involvement. 
Other types of cancers formed within the other structures 
of the liver include hepatoblastoma (formed by immature 
liver cells), cholangiocarcinoma (bile duct involvement), 

angiosarcoma (characterized by blood vessel cells 
involvement), and fibrosarcoma (connective tissue 
involvement).[23,24]

The Most Important Organelles Attributed to 
Reactive Oxygen Species Production
Peroxisomes and reactive oxygen species

Oxygen is consumed in various metabolic cycles in 
different parts of cell, where mitochondria, endoplasmic 
reticulum, and peroxisomes are on the top of these sites.[25] 
Peroxisomes are involved in a variety of important cellular 
functions, and its major role is considered to be in the 
decomposition of H2O2.

[26]

Peroxisomes play a key role in both the production and 
scavenging of ROS within the cells.[27] To maintain the 
equilibrium equivalence between production and scavenging 
of ROS, peroxisomes harbor several powerful defense 
mechanisms and antioxidant enzymes.[28] Such conditions 
are considered to generate peroxisome‑induced oxidative 
stress, which may overwhelm the antioxidant capacity 
leading to cancer. Furthermore, transition metal ions such 
as iron and copper are abundant in peroxisomes, and under 
certain conditions, these metal ions can be released and 
catalyze the formation of •OH in the Fenton reaction, thus 
leading to lipid peroxidation, damage of the peroxisomal 
membrane, and loss of peroxisomal functions.[29,30]

Peroxisomal enzymes responsible for reactive oxygen 
species generation

As shown in Table 1, peroxisomal enzymes attributed to 
ROS generation.

Peroxisomal enzymes scavenging reactive oxygen species

Peroxisomal enzymes that scavenge ROS are discussed in 
Table 2.

Peroxisome proliferation and induction of oxidative 
stress

The disproportionate increase of H2O2‑generating oxidases 
is suggested to be responsible for oxidative stress leading 
to the development of hepatic tumors in rodents treated 

Table 1: Peroxisomal enzymes attributed to reactive 
oxygen species generation

Acyl‑CoA oxidases[31]

Urate oxidase[32]

Xanthine oxidase[33]

D‑amino acid oxidase[34]

Polyamine oxidase[35]

D‑aspartate oxidase[36]

Pipecolic acid oxidase[37]

Sarcosine oxidase[38]

L‑alpha‑hydroxy acid oxidase[39,40]

Nitric oxide synthase[41]
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with peroxisome proliferating compounds.[52] Some 
compounds have been regarded as peroxisome proliferation 
stimulants including hypolipidemic drugs, industrial 
chemicals (e.g., plasticizers, lubricants, and agrochemicals), 
and other toxic environmental pollutants.[53,54] However, the 
oxidative stress does not seem to be exclusively responsible 
for the development of tumors in rodents exposed to 
peroxisome proliferators.[55] indeed, other mechanisms 
such as suppression of apoptosis,[56] perturbation of cell 
proliferation, and release of O2

− radicals from Kupffer 

cells[57] have also been suggested to play critical roles in 
the pathogenesis of tumors associated with peroxisome 
proliferation.[58]

Mitochondria
More than 90% of the oxygen received by aerobic cells is 
consumed in mitochondria, and only 1%–2% of this oxygen 
in mammalian mitochondria is used for the production of 
reactive oxygen intermediates. Thus, oxygen‑free radicals 
and hydroperoxides are being generated continuously as 
a product of mitochondrial respiratory chain,[59] causing 
oxidative damage (particularly the hydroxyl radical). The 
mitochondrial respiratory chain generates O2

− anions, which 
are converted to H2O2 within mitochondria, which will 
be released outside of the mitochondria.[60] It may cause 
damage to surrounding structures, especially mitochondrial 
DNA (mtDNA).

mtDNA is more prone to oxidative damage and mutation, 
since it lacks protective histones.[61‑63] Increased ROS 
generation in the liver may lead to premature oxidative 
damage of hepatic mtDNA leading to the development 
of HCC.[64,65] The amounts of oxidative stress’s 
damaging effects on mtDNA are several times greater 
than those of nuclear DNA, since mtDNA’s structural 
properties makes it several times more sensitive to 
mutations than nuclear DNA.[66] Mitochondrial reduced 
GSH plays a key role in protecting mtDNA against 
oxidative damage. Indeed, the oxidative damage to 
mtDNA is directly related to oxidation of mitochondrial 
GSH.[67] The respiratory enzymes containing the defective 
mtDNA‑encoded protein subunits may thus increase the 
ROS production, which in turn aggravates the oxidative 
damage to mitochondria.[68] O2

− radicals produced during 
mitochondrial respiratory chain’s activity also react 
with NO inside the mitochondria to produce destructive 
agent “peroxynitrite.”[69] Furthermore, mitochondria are 
themselves a source of NO, which may increase the 
formation of O2

− radicals and H2O2 by mitochondria.[70] An 
increase in the production of ROS is responsible for the 
decline in the activity of mitochondrial membrane proteins 
thus inhibiting mitochondrial respiratory chain’s activity.[71] 
The activation of stimulatory receptors causing enhanced 
production of NO and O2

− will provide another source 
of peroxynitrite production.[72] NO inhibits reversibly the 
activity of respiratory chain at the site of cytochrome 
C oxidase,[73] on the contrary, peroxynitrite inhibits the 
activity of respiratory chain irreversibly via inhibition of 
cytochrome oxidase and complexes I–III.[74]

Effect of Oxidative Damage on Intracellular 
DNA, Lipids, and Proteins: Potential Adverse 
Consequences of Oxidative Stress
Oxidative stress may result in damages of critical cellular 
macromolecules including DNA, lipids, and proteins. 
Oxidative DNA injury may participate in ROS‑induced 

Table 2: Peroxisomal enzymes that scavenge reactive 
oxygen species

Enzymes Description
Catalase Metabolizes H2O2 and a variety of substrates 

such as ethanol, methanol, phenol, and nitrites 
by peroxidatic activity[42]

Has an important protective function against 
the toxic effects of peroxides generated within 
peroxisomes and removes them efficiently[43]

Its activity within the peroxisomes significantly 
reduces in cancerous cells of the liver[44]

GPx Along with catalase plays important roles in 
cellular antioxidant defense by reducing the 
levels of hydroperoxides, which can otherwise 
be converted to highly reactive hydroxyl 
radicals through the metal mediated Fenton 
reaction[45]

MnSOD
Cu, Zn SOD

Major antioxidant enzymes that play critical 
roles in scavenging the superoxide radical, 
thus protecting cells against damages from free 
radicals
High levels of MnSOD expression have been 
detected in various primary human cancer 
tissues, that can be regarded as a consequence 
of ROS stress,[46,47] suggestive of a tumor 
suppressor role for MnSOD[48]

MnSOD with high expression in cancer tissues 
reduces cancer cell growth indirectly through 
elimination of superoxide.[49] The loss of such 
an antioxidant mechanism would lead to 
accumulation of superoxide and stimulation of 
cell proliferation and tumor growth[14]

Epoxide 
hydrolase

Metabolizes compounds containing an epoxide 
residue; by converting this residue to two 
hydroxyl residues through a dihydroxylation 
reaction producing diols[50]

Peroxiredoxin I Plays an antioxidant protective role in cells 
through reducing H2O2 and alkyl hydroperoxides

PMP 20 This protein has thiol specific antioxidant 
activity in human and mice
Capable of removing H2O2 via its 
thiol‑peroxidase activity, thus protecting 
peroxisomal proteins against oxidative stress[51]

ROS: Reactive oxygen species, H2O2: Hydrogen peroxide, 
GPx: Glutathione peroxidase, MnSOD: Manganese superoxide 
dismutase, Cu, Zn SOD: Copper zinc superoxide dismutase, 
PMP 20: Peroxisomal membrane protein 20
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carcinogenesis.[75] DNA damage has been observed in a 
wide range of mammalian cell types exposed to oxidative 
stress.[30] These damages can occur in different ways 
including single‑ and double‑stranded DNA breakages, 
deletions and insertions of single nucleotides, and even 
chromosomal aberrations. Major molecular mechanisms 
involved in DNA injuries can occur following the 
direct reaction of hydroxyl radicals and carbonyl 
compounds with DNA resulting in the activation of 
nucleases.[30] Superoxide and H2O2 just can react with DNA 
in the presence of transitional metal ions which cause 
hydroxyl radicals formation. The hydroxyl radical may 
attack to deoxyribose, purines, and pyrimidines, giving rise 
to numerous products, such as 8‑hydroxydeoxyguanosin, 
thymidine glycol, and 8‑hydroxyadenosine.[76] One of the 
most common forms of DNA injury is the formation of 
hydroxylated bases in DNA structure, which is considered 
to be an important event in the chemical carcinogenesis 
cycle.[77] Formation of such by‑products interferes with 
normal cell growth through genetic mutations and 
alterations in the ordinary transcription processes of 
genes. Oxidative DNA injury causes mutations through 
different pathways, including chemical modification of 
nucleotide moieties in DNA leading to alterations in their 
hydrogen bonding, exacerbation of polymerase‑specific 
hot spots, conformational changes in the DNA templates, 
and the induction of an error‑prone DNA polymerase 
conformation.[78]

Cellular fatty acids may be another target of oxidative 
stress products and can be readily oxidized by 
ROS producing lipid peroxyl radicals and lipid 
hydroperoxides.[7] Lipid peroxyl radicals can subsequently 
propagate into malondialdehyde (MDA). Moreover, these 
lipid radicals can diffuse through membranes modifying the 
structure and the function of the membrane, thus resulting 
in disruption of cell homeostasis. In addition, lipid peroxides 
may interact with cellular DNA triggering the formation 
of DNA‑MDA compounds.[77] Lipid damage through lipid 
peroxidation may result in several possible processes in 
which the most important is protein oxidation.[79] Proteins 
are also easily attacked by ROS through lipid peroxidation. 
Protein‑derived radicals can be rapidly transferred to other 
sites within the protein infrastructure. This can result in 
further modifications of enzymatic activities.[80] In addition to 
enzymes, damages to the membrane transport proteins may 
produce cellular ionic homeostasis and lead to alterations 
in intercellular calcium and potassium triggering a series 
of changes in target cells.[81] Alterations in receptor and gap 
junction proteins may also modify signaling in cells. In some 
cases, structural changes of proteins may allow the target 
proteins to be under the further attacks of proteinases.[82]

Other Targets of Oxidative Stress
Activation of transcription factors is an important 
signaling pathway for the regulation of gene transcription 

by ROS.[83] Transcription factors are proteins that can 
bind to the promoter region of a gene, thus regulating 
the transcription of genes involved in the development, 
growth, and aging of cells.[84] Regulation of subcellular 
localization from cytoplasm to cell nucleus is the first 
step for transcription factor’s activity, which is believed 
to be involved in this process. Considered to be the 
target of oxidative stress.[85] Nuclear factor kappa B and 
activator protein‑1 (AP‑1) are considered to be amongst 
the most important targets of oxidative stress.[86] The AP‑1 
transcription factor controls genes required for cell growth 
and its activity is increased by compounds with a major 
role in inducing the cellular proliferation. ROS can cause 
activation of AP‑1 as well as inducing the synthesis of 
it.[18] Oxidative stress can also increase AP‑1 transcription 
factor’s activity, concluding that ROS may play a central 
role in intracellular signal transduction. High levels of ROS 
may alter signal pathways through oxidative injury induced 
in cell membrane, changes in enzymatic activity, and/or 
the activation of transcription factors. These alterations 
may create important links between oxidative stress and 
tumorigenesis.[83] Consequences of ROS production on 
gene transcription may also inhibit normal cell apoptosis 
and result in an increase in the number of cells.

Oxidative Stress Indifferent Stages of Cancer
Induction of cancers through chemicals is a multistage 
process which can be defined by at least three steps or 
stages: initiation, promotion, and progression. Initiation 
stage contains a nonlethal and inheritable mutation in cells 
by the interaction of a chemical with DNA, conferring 
an additional growth to target cells. Activation of the 
carcinogen to an electrophilic DNA‑damaging moiety is 
critical for initiatory stage of DNA injury. ROS compounds 
are believed to mediate the activation of such carcinogens 
through hydroperoxide‑dependent oxidation that can be 
mediated by peroxyl radicals.[6] ROS compounds or their 
derivatives from lipid peroxidation, MDA, can also directly 
react with DNA to form oxidative DNA adducts.[77] The 
presence of carcinogen‑DNA and oxidative DNA adducts 
generated through chemical carcinogen’s activities suggest 
an interactive role for ROS in initiation stage. Therefore, 
ROS can have multiple effects on the initiation stage 
of carcinogenesis by mediating carcinogen activation, 
causing DNA injury, and interfering with the repair of the 
damaged DNA. The second stage (promotion) consists 
of the selective clonal expansion of the initiatory cell 
populations through either increased cellular proliferation 
and/or inhibition of cell death (apoptosis). Promotion stage 
of tumors will be accompanied by the involvement of 
selective clonal expansion of the initiatory cell populations 
through either increased cell division and/or decrease in the 
occurrence of cell death (apoptosis).[87,88] The final stage of 
tumorigenesis (progression) comprises the development of 
irreversible cancer growth from the preneoplastic cells of 
lesions.[89] This results in the formation of the preneoplastic 
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lesions (foci from) as a pathologic consequence of 
above‑mentioned processes. ROS agents are specifically 
generated in initiatory cell populations such as preneoplastic 
foci in the liver. Since ROS generation is related to P450 
enzyme’s activity, oxidative stress may have an important 
role in the clonal expansion of these initiatory cells. In 
fact, higher levels of ROS have been found in neoplastic 
nodules of rat liver in comparison with surrounding normal 
cells of liver’s tissues.[90] Another source of ROS can result 
from the oxidation of GSH by y‑glutamyl transpeptidase 
in preneoplastic foci.[90] Moreover, extracellular sources of 
ROS may come from inflammatory cells.[91]

These multiple sources of ROS may contribute to the 
formation of a persistent oxidative stress environment 
resulting in pathophysiologic changes and consequently 
allows for the selective growth of preneoplastic initiatory 
cells. Tumor progression results in the development of 
malignant benign lesions. At this point of the progression 
stage, oxidative stress may directly be effective on the 
emersion of cancerous lesions characteristics such as 
uncontrolled growth, genomic instability, chemotherapy 
resistance, invasion, and metastasis of cancerous cells. 
Tumor cells continually undergo high and persistent 
oxidative stress.[92] This persistent oxidative stress does 
not seem to be effective enough to induce cell death, since 
tumor cell’s sensitivity to oxidative stress is decreased.[93]

Oxidative Stress and Hepatocarcinogenesis: 
Causes and Triggers
Viral infections

Viral infection with either hepatitis C virus (HCV) 
or hepatitis B virus (HBV) is the most common and 
main cause of LC.[94,95] One possible mechanism of 
hepatocarcinogenesis of HCV is the involvement of 
oxidative stress, triggering genetic mutations as well 
as chromosomal alterations thus contributing to cancer 
development.[96]

Viruses cause HCC as a consequence of massive 
inflammation, fibrosis, and eventual cirrhosis within the 
liver.[97] numerous genetic and epigenetic alterations occur 
in liver cells during HCV and HBV infection, considering 
to be the major factor in the induction of the liver tumors. 
Viruses induce malignancy inducing changes in cells 
by altering gene methylation, affecting gene expression 
and promoting or repressing cellular signal transduction 
pathways. Thereupon, viruses can prevent apoptosis 
and promote viral replication and persistency.[97] The 
presence of HCV may induce the production of ROS 
itself in human liver and render hepatocytes susceptible 
to DNA damage, the accumulation of which may lead 
to malignant transformation.[96] Some mechanisms 
attributed to the generation of free radicals and increased 
oxidative stress in HCV‑infected individuals include: 
activation of nicotinamide adenine dinucleotide phosphate 

hydrogen (NADPH) oxidase within Kupffer cells and 
polymorphonuclear neutrophil cells during inflammation, 
iron overload and lipid peroxidation, activation of NADPH 
oxidase by NS3 protein of HCV, increased production 
of mitochondrial ROS/RNS by the electron transport 
chain of core and NS5A proteins of HCV, reduction in 
GSH output as a consequence of liver injury, decreased 
antioxidants and related genes expression, enhancement of 
pro‑inflammatory cytokines, increased expression/activity 
of cyclooxygenase2, amplification in the expression of 
CYP2E1.[98‑100]

Alcohol

Liver is the major site of ethanol metabolism, thus chronic 
alcohol consumption is associated with progressive liver 
diseases.[101] In alcohol‑related liver disorders, free radicals 
play a role in the pathogenesis of liver damage. Ethanol 
consumption increases ROS production, reduces cellular 
antioxidant levels, and enhances the oxidative stress 
in many tissues, especially the liver.[102] Acetaldehyde 
produced through the oxidation of alcohol has got the 
ability to inhibit the repair of alkylated nucleoproteins, 
decrease the activity of several enzymes, and causing 
damages to mitochondria. It also promotes cell death by 
depleting the levels of reduced GSH through inducing 
lipid peroxidation, and increasing the toxic effects of free 
radicals. Finally, acetaldehyde has been shown to enhance 
collagen synthesis.[103]

Chronic ethanol treatment suppresses mitochondrial 
function.[104] Alcohol‑induced inflammatory and innate 
immune‑mediated responses of Kupffer cells increase 
ROS‑induced injury and fibrinogenesis‑inducing 
factors (e.g., acetaldehyde or lipid peroxidation products).[105]

Aflatoxin

Aflatoxins are a group of chemicals produced mainly by 
the fungi Aspergillus flavus and Aspergillus parasiticus. 

Figure 1: Viral infection, obesity, smoking, diabetes, alcohol consumption 
directly or indirectly affects mitochondrial or peroxisome enzymes 
to produce reactive species, resulting in the gradual formation of 
hepatocellular carcinoma
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Food contamination by such fungi leads to ingestion 
of the chemicals. Aflatoxin is a potent hepatotoxic and 
hepatocarcinogenic agent, that exposure to it can lead to 
the development of HCC.[106] The mechanism by which 
aflatoxins cause cancer is through genetic mutations 
of gene involved in the prevention of cancer called 
p53.[107] In aflatoxicosis, oxidative stress would be a 
common mechanism that contributes to the initiation 
and progression of hepatic damage. It is metabolized in 
the liver cells and activated by hepatic cytochrome P450 
enzyme system to produce a highly reactive intermediate, 
which subsequently binds to nucleophilic sites of DNA. 
Moreover, its genotoxic proprieties can induce oxidative 
stress more than ever.[108]

Obesity, Diabetes, and Smoking
Several studies have been established a link between 
smoking, diabetes, and obesity with a state of excess 
oxidative stress [Figure 1].[109‑111]

Obesity has been implicated in the genesis of 
noncancerous liver diseases, such as nonalcoholic 
fatty liver disease (NAFLD). However, without 
proper management, NAFLD may cause severe liver 
inflammation, termed as nonalcoholic steatohepatitis, 
which can cause liver fibrosis and cirrhosis with serious 
complications, including liver failure, and HCC.[112] 
Epidemiological studies indicated that HCC shows the 
most strong straight correlation with obesity amongst 
all other cancers.[113] Fat accumulation and elevated 
levels of fatty acids correlate with systemic oxidative 
stress in human beings.[114] Remarkably, obese people 
display elevated levels of systemic oxidative stress, 
thus enhancing ROS which occurs in concurrent with 
lipid accumulation. Thus, adipose tissue represents 
an important source of ROS and oxidative stress may 
be a linking factor between obesity and cancer.[115] 
Epidemiological studies indicated that diabetes mellitus 
is another risk factor for chronic liver disorders and 
HCC.[116] Several mechanisms may explain the association 
between diabetes and primary LC. Patients with 
insulin‑independent form of diabetes (insulin resistant 
diabetes) showed compensatory hyperinsulinemia, which 
may stimulate hepatic cell proliferation.[117] Moreover, 
patients suffering from diabetes may undergo liver 
alterations, including fatty degeneration and cirrhosis, 
which favor the process of liver carcinogenesis through 
the stimulation of cell proliferation.[118] Furthermore, 
lipid peroxidation is considered as a source of mutagens 
triggered by ROS. Such condition has been shown 
to encourage the development of cancer‑promoting 
mutations in diabetic patients.[119]

In addition to the critical role of obesity and diabetes in 
LCs, many studies have shown a strong association of 
LCs with smoking as it significantly elevated the risk 
of HCC. The effect of cigarette smoking on individuals 

may promote the progression from hepatitis to cirrhosis, 
or from cirrhosis to HCC.[120] The presence of several 
compounds in tobacco and the role of liver in the 
metabolism of these compounds, makes the liver prone to 
HCC.[121]

Discussion and Future Perspective
According to recent studies, oxidative stress appears to 
be an important factor in a number of human diseases 
including the induction of LC. Several agents seem to 
induce oxidative stress either directly or indirectly through 
alterations of cellular antioxidant defense mechanisms. In 
conclusion, formation of ROS triggered by toxic agents, 
specifically chemical carcinogens, may be considered as an 
important mechanism in evaluating LC.
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