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Abstract
Glioblastoma is a brain tumor that develops due to both genetic and epigenetic risk factors. Crosstalk 
between the genetic and the epigenetic offers new possibilities for therapy. Abnormal methylation 
of methylguanine‑DNA methyltransferase (MGMT) promoter region and isocitrate dehydrogenase 
1 (IDH1) mutations are prognostic and therapeutic response markers in glioblastoma. Mutations in 
genes such as epidermal growth factor receptor, TP53, and P16 have been reported in glioblastoma; 
therefore, they might associate with survival and worth to be used in estimating survival risks. 
MKI67 expression associates with posttreatment such as adjuvant radiotherapy results evaluation. 
On the other hand, monosomies, such as deletions of chromosome 10, especially q23 and q25–26, 
are good markers for estimating the progression and aggressiveness of glioblastoma. The profile 
of MGMT methylation is modified in glioblastoma and hence can be a good target for epigenetic 
drugs. Other useful strategies in the treatment of gliomas include several micro‑RNAs (MiRs) 
which are alerted in glioblastoma and which affect the regulation of mRNAs are associated with 
gene expression profiles of the disease. Epigenetic drugs, such as azacitidine and decitabine, which 
belong to the DNA methyltransferases (DNMT) inhibitor 5‑aza‑2’deoxycytidine (5‑aza‑dC), can 
suppress DNMT1 and stimulate tumor suppressor genes expression. MGMT methylation status and 
IDH mutational status are two valuable prognosis and therapeutic response markers in glioblastoma. 
Regulation of glioblastoma through epigenetic drugs, such as not only inhibitors of EZH2, histone 
deacetylase, and DNMT, but also MiRs, are promising approaches in glioblastoma treatment. 
Improves in understanding cancer genetic and epigenetic disruptions is the key point in solving the 
puzzle of glioblastoma treatment.
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Introduction
Glioblastoma is one of the most common 
brain tumors[1,2] with poor prognosis 
and limited chemotherapy efficiency as 
a result of the blood–brain barrier.[3] To 
improve the prognosis of glioblastoma, 
the minocycline, telmisartan, and 
zoledronic acid (MTZ) regimen were 
recommended, which includes MTZ.[4] 
Heterogeneity of glioblastoma investigates 
the variability of genetic and epigenetic 
of this tumor, changes in methylation 
pattern. Various mutations in different 
genes are responsible for glioblastoma.[1] 
Glioblastoma invades other organs through 
blood mostly and lymphatic pathways; 
however, this tumor has low potential of 
metastasis to out of central nerve system 
as a result of blood–brain barrier and 
absence of lymphatic vessels.[5] Mutations 
in genes such as epidermal growth factor 
receptor (EGFR), TP53, and P16 have 
been reported in glioblastoma, therefore, 

they might associate with survival, and 
they are worth being used in estimating 
survival risks.[6] A study on six metastatic 
glioblastomas investigated CDKN2A/P16 
deletion; loss of alleles on chromosomes 
1p, 10q and 19q, TP53 mutation, and EGFR 
amplification and interestingly metastasis 
occur mostly in young patients with TP53 
mutation.[7] Recent studies demonstrated 
that the metastasis process can be affected 
by various molecules such as chemokines, 
pro‑angiogenic factors, growth factors, 
extracellular matrix‑remodeling proteins, 
and several micro‑RNA (MiRs).[8] A study 
on IDH1 gene mutation in glioblastoma, 
with oligodendroglia appearance 
and1p19q deletion, showed a better 
response to chemotherapy in comparison 
to other mutations.[9] The most invasive 
mutation in astrocytic gliomas, a 
subtype of glioblastomas, is 9p21 
deletion which can activate MYC 
signaling pathway.[10] At the molecular 
level, glioblastoma is characterized 
by different genetic and epigenetic 
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changes that affect different oncogenes and tumor 
suppressor genes. However, few of these changes are 
known as prognostic and treatment response markers 
such as abnormal methylation of methylguanine‑DNA 
methyltransferase (MGMT) promoter region and isocitrate 
dehydrogenase 1 (IDH1) mutations.[11] Genetic studies 
can assist in finding a therapeutic target, however; our 
knowledge is not enough yet.[12] Recent studies suggests 
that the origin of glioblastoma in the brain can be helpful 
in choosing the therapeutic method and estimating patients 
response.[13] Epigenetic modifications of tumor cells have 
been investigated in glioblastoma whereas epigenetic drugs 
are considered as good targets for glioblastoma therapeutic 
studies.[14] Recent therapeutic approaches, such as DNMT 
and histone deacetylase (HDAC) inhibitors, which overturn 
epigenetic effects, are intensively considered in neoplastic 
disorders and malignancies.[15] In this review, we discuss 
the genetics and epigenetics of glioblastoma and the effect 
of mutations on its features. We also discuss various 
treatment strategies such as epigenetic drugs, MiRs, and 
gene editing. The challenge is to classify glioblastomas 
according to genetic and epigenetic defects and to manage 
the treatment strategies according to tumor’s genetic and 
epigenetic origins.

Glioblastoma Genetic and Possible Classification
Genome‑wide profiling studies have investigated genomic 
heterogeneity among glioblastoma tumors, and different 
molecular signatures defined subclasses that can be 
useful in stratification of treatment.[16] However, mutation 
occurrence in glioblastoma is lower than other solid 
tumors.[17] On the other hand, loss of heterozygosity (LOH) 
among markers of the long arm of chromosome 10 (10q), 
which contains cancer genes such as PTEN, FGFR2, and 
MKI67, is detectable in up to 80% of glioblastoma cases.[11] 
In fact, monosomies such as deletions of chromosome 10, 
especially q23 and q25–26, are good markers for estimating 
the progression and aggressiveness of glioblastoma.[18] 
I n astrocytomas and oligodendroglial tumors, which are 
subtypes of glioblastoma tumor, IDH mutations usually 
happen earlier than 1p deletion (del),9q del and tumor 
protein p53 (TP53) mutations.[19] Amplification of CDK and 
MDM2 oncogenes in glioblastoma disrupts P53 and RB 
pathways, and their mutations are associated with tumor 
progression.[17] Indeed, TP53, PTEN, and EGFR genes 
are the most frequently mutated genes in glioblastoma  
[Table 1].[20]

Epigenetics in Glioblastoma
Epigenetic risks such as allergies, atopic diseases, and 
systemic infections seem to be important in triggering 
glioblastoma, however; neither cigarette smoking nor 
alcohol consumption have been reported as risk factors.[46,47] 
Sturm et al. dentified six epigenetic glioblastoma subgroups 
displaying characteristic global DNA methylation patterns 

harboring distinct hotspot mutations, DNA copy‑number 
alterations, and transcriptomic patterns.[1] The most 
common epigenetic change in glioblastoma is the LOH 
of chromosome 10q.[44] Several cancer mutations cause 
changes in DNA methylation profile, histone modifications, 
and nucleosome positioning which disrupt vital signaling 
pathways.[48] Studies showed that several epigenetic changes 
such as methylation of LINE‑1 to be associated with poor 
prognosis in primary glioblastoma patients.[49] Changes 
in promoter DNA methylation pattern are important in 
glioblastoma, especially if the methylation occurs in a 
promoter involved with crucial biologic pathways.[50] 
Abnormal methylation of the MGMT promoter region 
and mutations in IDH1 are two valuable prognosis and 
therapeutic response markers in glioblastoma.[51,52] For 
instance, epigenetic changes such as changing MGMT 
methylation profile might result in a decrease in MSH2, 
MSH6, and PMS2 proteins in glioblastoma.[53] In fact, 
hypermethylation of several tumor suppressors, DNA repair 
genes, and cell‑cycle regulators is associated with increased 
mutation rate and poor outcome in glioblastoma.[54] In 
addition, several studies showed that MGMT promoter 
methylation status can be a predictor of temozolomide 
response in glioblastoma.[55] Moreover, CHK2 that 
inhibits cell‑cycle progression through decreasing 
cyclin‑dependent kinases (CDK) activity has been found to 
be hypermethylated in gliomas.[56]

Developing Therapeutic Approaches According 
to Genetic and Epigenetic Changes
Mesenchymal stem cells (MSCs) have inhibitory effects 
on growth, invasion, and metastasis of solid tumors. 
Therefore, they can be considered as a therapeutic approach 
in tumor treatment although their exact role in tumor 
progression is still unknown.[57] Since glioblastoma tumors 
do not respond efficiently to chemotherapy, radiation, and 
they are not surgically curable, novel treatment methods 
are needed.[58] MiRs affect gene expression and are 
candidates for glioblastoma therapy. For instance, MiR‑873 
downregulate IGF2BP1 expression affecting negatively 
the carcinogenesis and metastasis of glioblastoma.[59] 
On the other hand, MiR610 decrease the proliferation 
and cell growth of glioblastoma through inhibiting 
CCND2 and AKT3 expression at the transcriptional and 
translational levels.[60] Long noncoding RNAs (lncRNAs) 
such as ASLNC22381 and ASLNC20819, which target 
IGF‑1, play important roles in glioblastoma development 
and progression. Therefore, targeting lncRNAs might 
be an effective therapeutic approach.[61] Epigenetic 
modifications are altered in tumor cells, in comparison 
to normal tissues, which can be reverted by inhibitors 
interfering in epigenetic enzymatic activities. For example, 
5‑aza‑2’‑deoxycytidine (5‑AZA‑CdR) is an epigenetic drug 
which increases apoptosis in glioblastoma cells through 
caspase‑8 pathway.[62]
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Epigenetic drugs

Epigenetic drugs are undergoing clinical trials and some 
of them have been already approved for cancer treatment 
by the Food and Drug Administration and the European 
Medicines Agency.[63] Targeting epigenetic regulators 
such as EZH2 and BMI1proved to be effective in vitro 
and in vivo.[64] EZH2 interact with several lncRNAs, 
therefore, EZH2 inhibitors are used to potentially control 
glioblastoma progression.[61] Drugs which suppress DNMT1 
hypomethylated the DNA across cell divisions and can 
stimulate tumor suppressor genes to be expressed. For 
instance, azacitidine and decitabine belong to the DNMT 
inhibitor 5‑aza‑2’deoxycytidine (5‑aza‑dC) which is a 
category of epigenetic drugs that have been approved by the 
FDA for the treatment of myelodysplastic syndromes, acute 

myeloid leukemia, and medulloblastoma.[55,65] Combination 
treatment of epigenetic drugs such as HDACi and DNMT 
represent a new hope in glioblastoma treatment.[65]

Micro‑RNAs

Micro‑RNAs (MiRs) are types of noncoding RNAs 
that control gene expression at the posttranscriptional 
level.[66] MiRs play important regulatory roles in biological 
processes such as apoptosis, migration, and invasion.[67] 
Recent studies have investigated several MiRs that are 
alerted in glioblastoma and which affected the regulation 
of mRNAs associated with gene expression profiles.[68] 
A summary of several studies based on MiRs therapeutic 
potential as an epigenetic drug in glioblastoma is presented 
in Table 2.

Table 1: Genetic changes of glioblastoma
Mutation Result Prognosis References
PTEN (10q23.31) inactivation generation of cells, angiogenesis, invasion of cells, immune 

response, differentiation of cells, and cell survival
Poor [21]

Activation of the FGFR2 oncogene (10q26.13) ‑ Poor [22]
Deletion of the FGFR2 oncogene (10q26.13) ‑ Good [11,23]
MKI67 (10q26.2) High expression is related with shorter survival, expression 

can be associated with posttreatment such as adjuvant 
radiotherapy

Poor [24]

TERT promoter mutations Poor survival, require aggressive treatment ‑ [25]
Deletion of 10q26 Favorable response to TMZ Good [11,24]
IDH1 mutant sGBIV Longer survival Good [26]
PDGFRAgain or amplification Poor outcome Poor [26]
1p/19q codeletion Predicts response to radiation or chemotherapy Good [19,27,28]
BRAF (V600E) mutation Good response to BRAF/MEK inhibitors ‑ [29]
amplification of MDM2 (1q32) Small fraction of human malignant gliomas escapes 

p53‑dependent growth control
‑ [30,31]

Amplification of AKT3 Mutated cells survive, tumor recurrence Poor [32]
Amplification of 12q13‑15 Decreased survival ‑ [33]
Deletion of NFKBIA gene Associated with poor survival Poor [17]
Amplification of EGFR Multimodal therapeutic resistance, generation of cells, 

angiogenesis, invasion, immune response, differentiation, 
and cell survival

Poor [34]

Deletion of CDKN2A Pathogenesis of glioblastomas ‑ [35,36]
Mutation of TP53 Generation of cells, angiogenesis, invasion, immune 

response, differentiation, and cell survival
Poor [20]

Aberrant activation of ras signaling Tumor development ‑
RTK amplifications Mechanism of resistance Poor [37]
Loss ofRB1 expression Tumor development Poor [38]
Mutation of NF1 Associate with CNS pathogenesis Poor [39]
Mutation of PIK3CA Therapeutics targeting ‑ [40]
Mutation of PIK3R1 Increase tumorigenicity Poor [41,42]
KUB3, CDK4, and/or CYP27B1 amplification Decreased survival, resistant to TMZ ‑ [33]
MGMT (10q26.3) methylation Favorable response to temozolomide, predictive marker for 

prolonged survival
Good [17,19,43]

LOH at the 10q23.3‑26.3(deletion or an 
aUPD)

Contain PTEN, FGFR2, MKI67, and MGMT, allow to find 
molecular markers of disease prognosis and response to 
treatment

‑ [44]

H3F3A mutations Associated with a uniformly Poor [45]
IDH: Isocitrate dehydrogenase, TERT: Telomerase reverse transcriptase gene, TMZ: Temozolomide, LOH: Loss of heterozygosity, 
UPD: Uniparental disomy, RTKs: Receptor tyrosine kinases, CNS: Central nervous system
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Conclusion and Future Perspectives
Glioblastoma is a brain tumor with high frequency of 
mutations and poor prognosis. Glioblastoma involves 
various genetic and epigenetic changes that render 
diagnosis and treatment very difficult. Various mutations 
in EGFR, TP53, and P16 have been reported in these 
tumors. Important genetic markers implicated in estimating 
prognosis include 1p19q deletion, MGMT methylation, 
and IDH mutational status. Hypermethylation of several 
tumor suppressors, DNA repair genes, and cell‑cycle 
regulators is associated with increased mutation rate and 
poor outcome in glioblastoma. Since most of the genetic 
changes lead to epigenetic modifications, we hypothesize 
that glioblastoma develops as a result of epigenetic 

Genome editing technologies

Discovery of the clustered regularly interspaced short 
palindromic repeat (CRISPR)/Cas system, offered a path 
to genome engineering. CRISPR/Cas was first generated 
and applied in 2013; however, limitations such as vector 
delivering systems into cells are still the challenging point 
of this technology.[87] CRISPR/Cas‑based genome editing 
technologies are supposed to increase our ability to engineer 
genetic changes in glioblastoma‑derived neural stem 
cells.[88] Zinc finger‑mediated gene editing for the treatment 
of glioblastoma has been taken to the clinic.[89] Hematopoietic 
stem cell transplantation and immunotherapy are suggested 
therapeutic approaches because they can induce tumor‑specific 
T cells production to fight malignant gliomas.[90]

Table 2: Studies on micro‑RNAs are with therapeutic potential in glioblastoma
MiRs Study on Result References
MiR‑124 and MiR‑137 Adult mouse neural stem cells Inhibit proliferation of glioblastoma cells/

induce differentiation of brain tumor stem cells
[69]

MiR‑101 HBMVECs; cell systems ACBRI‑376 EZH2‑induced proliferation, migration, and 
angiogenesis

[70]

MiR‑21 downregulation The human U251 and LN229 
glioblastoma cell lines

Inhibits EGFR pathway/suppresses the growth 
of human glioblastoma cells independent of 
PTEN status

[68]

MiR‑221 and MiR‑222 U251 and LN229 cells Induce cell survival/inhibited cell apoptosis by 
targeting pro‑apoptotic gene PUMA in human 
glioma cells

[71]

MIR‑451 and Imatinib mesylate A172 cells Inhibit tumor growth in glioblastoma stem cells [72]
MiR‑17‑92 downregulation Glioblastoma spheroid cultures 

enriched in tumor‑initiating cells
Increased apoptosis and decreased cell 
proliferation

[73]

MiR‑9/9 inhibition* R28 cells Decrease glioblastoma cell survival [74]
MiR‑29b and miR‑125a LN229, U87, LN319, and U251 cell 

lines
Suppress invasion in glioblastoma [75]

MiR‑181d A1207, T98G, LN340, and LN18 
glioblastoma cells

Downregulates MGMT expression [76]

MiR‑182 GICs Integrates apoptosis, growth, and differentiation 
programs in glioblastoma

[77]

MiR‑99a U87MG and U118MG cells Inhibit FGFR3 and PI3K/Akt signaling 
mechanisms/control growth of human 
glioblastoma

[78]

MiR‑124 Glioma cell lines and GCSCs Inhibits STAT3 signaling/enhance T 
cell‑mediated immune clearance in glioma

[79]

MiR‑15b and MiR‑152 9L rat glioma cell line Reduce glioma cell invasion and angiogenesis [80]
MiR‑218 Mice Promote the development of targeted therapies 

in mesenchymal glioblastoma
[81]

MiR‑125b Glioma cell line Inhibits connexin43 expression/increase cell 
growth and anti‑apoptosis

[82]

MiR‑7 CHG5, TJ899, and TJ905 human 
glioblastoma cell lines

Inhibits glioblastoma growth by interfering 
with PI3K/ATK and Raf/MEK/ERK

[83]

MiR‑124a A172, T98G, U87MG, MO59J, 
MO59K, and CCF‑STG1 cell lines

Inhibit migration and invasion of glioblastoma [84]

MiR‑34a1 Immunodeficient mice compared with 
wild‑type U251 glioblastoma cells

Act as tumor suppressor modulating EGFR in 
glioblastoma

[85]

MiR‑483–5p U87, U251, and SHG44 human 
glioma cell lines and HEK293T

Suppresses the proliferation of glioma cells 
through targeting ERK1

[86]

*MiR‑9, MiR‑9* (referred to as MiR‑9/9*). HBMVECs: Human brain microvascular endothelial cells, GICs: Glioma‑initiating cells, gCSCs: 
Glioma cell line stem cells, HEK293T: Human embryonic kidney cells, MiRs: Micro‑RNAs, EGFR: Epidermal growth factor receptor
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defects and that we could overcome glioblastoma by 
controlling the epigenetic changes. Hence, genetic and 
epigenetic changes can be benefit approaches in detecting 
the prognosis and treatment responses in glioblastoma. 
Regulation of glioblastoma through epigenetic drug such 
as not only inhibitors of EZH2, HDAC, and DNMT, but 
also MiRs, can be promising approaches in glioblastoma 
treatment because recent studies in these fields developed 
based on animal studies. Understanding cancer genetic and 
epigenetic disruptions are crucial for solving the puzzle 
of glioblastoma treatment. We recommend several studies 
based on combination regimens involving epigenetics and 
immunotherapy might be useful in increasing the hope of 
the treatment of glioblastoma.
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