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Molecular Imaging for Cancer Diagnosis and Surveillance 
 
Abstract 

Nowadays, molecular imaging technologies have a pivotal role in the field of clinical oncology. The 

utilization of imaging methods in the early detection of cancer, assessment of treatment response, and 

development of new therapies is steadily increasing and has already had a significant impact on the 

clinical management of cancer. Molecular imaging is indispensable for both the detection and 

treatment of cancer. It focuses on various biomarkers used in targeted therapy, and nuclear medicine-

based molecular imaging is a real-time and non-invasive technique that has the potential to identify 

tumors at an earlier and more manageable stage, before anatomical imaging methods reveal the 

presence of the disease. Molecular imaging offers extensive possibilities for visualizing cellular and 

molecular activities throughout tumor growth, serving as a biomedical imaging technology with 

remarkable sensitivity in detecting and resolving images. It provides non-invasive methods for 

observing, characterizing, and quantifying biological processes at the cellular and subcellular levels. 

The development of molecular imaging biomarkers is aimed at improving the evaluation of the effects 

of targeted therapy. Examples of molecular imaging techniques include positron emission tomography 

(PET), single-photon emission computed tomography (SPECT), magnetic resonance imaging (mMRI), 

magnetic resonance spectroscopy (MRS), optical imaging, photoacoustic imaging, and multimodal 

imaging. Some modalities require the administration of molecular probes, while mMRI and 

photoacoustic imaging can track the effectiveness of drugs using either endogenous molecules or 

exogenous molecular probes. 
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Introduction 

Several distinct imaging techniques are 

utilized in medical contexts as imaging 

plays a vital role in both the detection and 

treatment of cancer. The objective of 

molecular imaging is to detect and evaluate 

the key biomolecules and molecular 

mechanisms that contribute to cancer in 

vivo. This offers a non-invasive method for 

detecting cancer metastases in preclinical 

and clinical models by examining, 

characterizing, and measuring biological 

processes at the microscopic scale.[1] 

Molecular imaging is a medical imaging 

technique that merges molecular biology 

and biomedical imaging to track and 

evaluate the complete spread of biological 

activities in living organisms without 

invasive procedures. It has diverse 

applications in biochemical, biological, 

diagnostic, and therapeutic domains.[2, 3] A 

few illustrative examples of molecular 

imaging techniques are radionuclide 

imaging (PET), single-photon emission 

computed tomography (SPECT), molecular 

magnetic resonance imaging (mMRI), 

magnetic resonance spectroscopy (MRS), 

optical imaging (optical bioluminescence, 

optical fluorescence), photoacoustic 

imaging PAI, and multimodal imaging. 

To achieve optimal in vivo cancer imaging, 

the use of chemosensitive or genetic sensors 

is essential. The main problem for 

molecular imaging is to create unique 

reporter probes, which exist in a variety of 

forms and sizes, but their main components 

are a targeting molecule and a specific 

ligand. The probe should target and 

visualise the biological process of interest in 

vivo. Although endogenous molecules or 

exogenous probes can evaluate drug 

efficacy, molecular probes must be 

administered through injection to obtain 

imaging signals for both radionuclide and 

optical imaging.[4, 5] Metabolic probes or 

their analogues are substances used in 

metabolic reactions that can be designed to 

attach to or function as substrates for 

specific enzymes, receptors, antigens, or 

transporters. A sensor or scanner is required  
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to locate them and convert their discovery into spatial data. 

When evaluating the physiological effects of 

immunosurveillance imaging probes, it is important to 

consider how antibodies can reduce the number of target cells, 

activate or inhibit receptor signaling, or interfere with the 

normal functions of soluble proteins.[6-8] 

Methods of molecular imaging 
The anatomical imaging modalities of ultrasound, computed 

tomography, and magnetic resonance imaging (MRI) can be 

utilized in comparison to enhance contamination detection. 

Techniques for molecular imaging in 2 and 3 dimensions 

provide valuable information. Unlike hybrid imaging 

techniques like SPECT/CT, PET/CT, and PET/MRI, which 

combine anatomical specificity, spatial resolution, and 

molecular sensitivity, scintigraphy uses flat scanning to 

provide a two-dimensional image.[8, 9] 

The expansion of cancerous cells can serve as a dependable 

indicator to evaluate the effectiveness of modern anti-tumor 

medications. The significance of 18F-FDG-PET scanning in 

cancer therapy is growing as it can detect, classify, and monitor 

tumor reactions to chemotherapy and chemoradiotherapy. The 

application of radioligands with targeted molecular validation 

will have a notable favorable influence on the creation of 

therapeutic drugs as it will simplify the process of matching 

the right treatment with the suitable patient.[7]  

Optical imaging 
A safe technique called optical visualization that uses light and 

the optical properties of protons to see the tissues, cells, and 

molecules that make up an organism. It is more secure than 

ionizing radiation, making it acceptable for routine use to 

monitor gene expression, the development of a disease, or the 

effectiveness of therapy. Even though it has a shallow 

infiltration depth and insufficient spatial resolution, it contains 

a variety of subtypes.[2, 10, 11] For biomedical imaging, optical 

imaging has been used because of its non-invasiveness and 

high-resolution capabilities.[4, 12, 13]  

Non-ionizing radiation is used in optical imaging to evaluate 

gene expression, disease progression, and therapy 

effectiveness. The cell membrane, organelles, and chemical 

components that control cancer metabolism may be identified 

thanks to genetically encoded optical markers like fluorescent 

protein and luciferase. However, due to their limited tissue 

penetration and the necessity of transfecting the luciferase 

gene into BLI, the practical use of BLI and FLI is 

challenging.[2] 

Bioluminescence imaging (BLI) Through the interaction of 

luciferases and their substrates, the technique known as 

Bioluminescence Imaging (BLI) [2, 4, 14, 15] produces light. This 

technique is used to detect cancer, monitor the course of the 

disease, and assess how well cancer therapies work in real-

world situations. Using the photoacoustic effect to generate an 

ultrasonic signal, PAI is another non-invasive molecular 

imaging technique. An ultrasonic signal is produced when a 

substance is exposed to laser pulses, which caused part of the 

energy to be absorbed and converted into heat. Monitoring the 

development of tumor-specific biomarkers, detecting tumor 

cells, and assessing endogenous contrast agents are all possible 

using PAI. By evaluating vascular regression, normalisation, 

and tumor hypoxia in preclinical models, it was possible to 

gauge the effectiveness of antiangiogenic treatment.[16-18] 

Fluorescence imaging[19-22] (FLI) Optical imaging, sometimes 

referred to as FLI, uses fluorescent proteins or dyes that have 

undergone genetic modification to generate pictures of tumors 

by detecting light that is released. This method is used in 

preclinical research for therapeutic response monitoring, 

fluorescence imaging-guided surgery, and cancer diagnosis. 

However, autofluorescence noise, which is brought on by 

endogenous fluorophores in the tissue, lowers the signal-to-

noise ratio. Although NIR FLI has been investigated in 

preliminary clinical research to direct cancer surgery, there 

have been no reports of FLI deployment in clinical settings to 

assess the efficacy of targeted therapies. Jermyn et al. 

investigated the use of SERS for intraoperative brain tumor 

identification, a technique with great sensitivity and specificity 

for evaluating surgical margins. SERS is an optical imaging 

technique with great sensitivity and specificity for evaluating 

surgical margins.[6, 23]  

Chemiluminescence 

Bioluminescence may be utilized to study a variety of key 

mechanistic elements of cancer biology and is frequently used 

to track the outcomes of cancer therapy thanks to clever uses 

of chemical methods.[24, 25] 

 

Ultrasonic imaging (US): High-frequency sound waves are 

used in the ultrasonography procedure to create anatomical 

images. Its high spatial and temporal resolution makes it 

possible to observe deep tissues up to a centimetre in depth. It 

has been proven that contrast media, such as gas microbubbles 

encased in lipid or protein shells, make tumor angiography 

easier. However, because of its poor resolution and operator-

dependent findings, its usefulness is constrained.[26, 27] 

Fluorescent imaging in the near-infrared (NIR) range offers 

significant advantages for capturing surgical targets in real 

time. The depth of light penetration is sufficient, and NIR 

imaging is characterized by low absorption in blood and other 

tissues, minimal scattering, and invisibility to the human eye, 

making it ideal for intraoperative imaging.[28, 29]   

Magnetic resonance imaging (MRI): A high-resolution 

imaging technique that gives excellent tissue contrast 

regardless of depth is magnetic resonance imaging (MRI). 

Contrast agents are typically comprised of superparamagnetic 

substances like ultrasmall superparamagnetic iron oxide 

(USPIO) and nanoparticle iron oxide (SPION), or 

paramagnetic metal complexes like gadolinium (III), 

dysprosium (III), or manganese (II).[30, 31] Excellent anatomical 

resolution is provided by magnetic resonance imaging (MRI), 

which is distinguished by its capacity to provide stunning 

pictures of soft tissues. This non-invasive imaging method is 

frequently referred to as an anatomical imaging modality.[8]  
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Using specialized magnetic nanoparticles, targeted MRI can 

find molecular markers that are particular to tumors. This 

makes it possible to categorize patients, administer 

individualized therapy specifically to the area that is harmed, 

and evaluate the success of treatment for tumors that express 

certain biomarkers using MRI. The main goal of using MRI in 

cancer-targeted therapy is to anticipate the response to targeted 

therapy by examining data collected by MRI before treatment 

and evaluating changes in MRI during treatment to evaluate 

the response.[2, 8, 30] 

Radionuclide imaging refers to the utilization of radioisotopes 

in single photon emission computed tomography (SPECT) and 

positron emission tomography (PET). Due to the availability 

of numerous radiopharmaceuticals for clinical purposes, 

SPECT imaging is frequently employed in clinical settings 

over PET imaging. PET images possess remarkable sensitivity 

and exhibit quantifiable imaging traits, including the 

standardized uptake value (SUV).[2] PET-MRI allows for 

precise correction of anatomical structures and thorough 

examination of the molecular characteristics of tumors, 

broadening the scope of multimodal imaging and decreasing 

patients’ radiation exposure. Tumor imaging employs nuclear 

medicine tomography and molecular imaging tracers with 

genetic coding.[2, 4, 32] 

A therapeutic context can benefit ”rom ’adionuclide imaging 

because of its great sensitivity and tissue penetration. Using 

several X-ray transmissions, CT imaging reconstructs high-

resolution images. In intravascular CT, contrast agents, such as 

B. iodinated compounds, are employed to enhance image 

contrast. CT scans are frequently used in conjunction with PET 

and SPECT images to enable accurate probe anatomical 

localization. 

Images are taken using Molecular Imaging Probes. Biological 

changes related to sickness can be monitored using MRI and 

other imaging methods like photoacoustic imaging. In medical 

practice, imaging agents such as 18F-FDG and 99mTc-sulfur 

colloid, which are not specific to tumors, are commonly 

employed to locate lesions or lymph nodes in patients with 

cancer and to evaluate the efficacy of cancer treatment.[2, 33, 34] 

Radiation exposure risks and inadequate spatial resolution are 

problems with multimodal PET/SPECT imaging. While 

optical imaging offers a greater depth of penetration and higher 

spatial resolution than MRI, the latter has a lower specificity. 

Low resolution and variable subjective results characterize US 

images. To circumvent these restrictions, researchers have 

attempted to merge two or more imaging techniques to 

produce multimodal molecular images. Multimodality 

molecular imaging has been utilized in preclinical and clinical 

investigations for timely identification, disease staging, 

evaluation of therapeutic responses, surgical guidance, and 

prognostic evaluation.[2, 6, 35] 

A cheap and easily accessible radiotracer with several 

therapeutic applications is 18F-FDG. Although it performs 

clinically very well, it cannot be used to evaluate therapeutic 

response. Additionally, individuals who receive targeted 

therapy can have their prognosis predicted using radionuclide 

imaging. It will be challenging to replace 18F-FDG as a 

general cancer imaging agent because of its vast application 

and well-established clinical procedures. 18F-FDG is a cheap 

and easily accessible radiotracer. It is expected that molecular 

imaging in oncology will continue to be dominated by the 

uniform use of 18F-FDG, which follows a standard approach 

of patient preparation, dosage, uptake time, and scanner 

procedure for all types of tumors.[2, 6, 36] 

The integration of multiple imaging modalities for integrated 

image processing and information retrieval is known as 

multimodal imaging. There are techniques to increase in vivo 

safety using non-viral vectors including liposomes, cationic 

polymers, nanocarriers, and others. The development of 

multimodal imaging for robotic surgery also included the 

creation of a unique laparoscopic drop-in-G detector that 

improved the sensitivity of SLN detection in patients with 

prostate cancer. Researchers are developing multimodal 

imaging systems that combine the capabilities of two or more 

MI modalities to solve the limitations of individual modalities. 

A modern medical invention, medical imaging enables the 

viewing of the whole human body.[2, 37] 

Applications of molecular imaging 
Tracking therapy response for drug development, finding 

positive surgical margins after tumor resections, optimizing 

dosing schedule, determining therapeutic regimes, and 

monitoring therapeutic response. Preclinical research study of 

the tumor microenvironment, hypoxia in relation to flash 

radiotherapy, hypoxia in relation to cancer progression, and 

therapy response to radiotherapy. The acidic environment of 

the tumor detects metastatic lesions, genetic and epigenetic 

abnormalities. 

Advanced anatomical imaging and molecular imaging (MI) 

enable accurate identification and thorough examination of 

biomarker status, disclosing valuable biochemical insights at 

microscopic levels in vivo and promoting the progress of drug 

development. 

Personalized medicine seeks to increase diagnosis accuracy 

and minimize treatment failure, and Molecular Imaging is 

essential for this. Prognostic AI techniques have the potential 

for automated molecular imaging approaches to optimize 

dosing schedules, determine therapy regimens, and monitor 

therapeutic response. FDG-PET imaging is becoming 

increasingly relevant in cancer treatment due to its capacity to 

diagnose, grade, and measure tumor response to chemotherapy 

and chemoradiotherapy. 

Conclusion 

Molecular imaging (MI) is used to study biological activity at 

the cellular and subcellular levels in live animals, including 

patients. MI pictures shed light on illness-related processes and 

mechanisms, facilitating early disease identification, 

medication optimization, treatment response prediction and 
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tracking, and disease recurrence monitoring. MI is also used 

by biotechnology companies to enhance the processes for 

medication discovery and validation. MI can detect tumors at 

an earlier, more curable stage and is a non-invasive and real-

time method. Genetically encoded molecular imaging probes 

have been produced extensively to mark certain cells or 

proteins of interest in tumor tissues. With the use of technology 

and MI agents, it is now possible to do image-guided biopsies 

for cancer imaging, investigate tumor heterogeneity, evaluate 

therapy response, and diagnose tumors with greater precision.  

MRI offers high spatial resolution and is ideal for 

morphological and functional imaging. Targeted contrast 

agents with high specificity and relaxivity are needed for 

molecular imaging of disease biomarkers, often connected to 

high payload or relaxivities. The most beneficial aspect of 

optical imaging is that, unlike other medical imaging 

modalities, it and ultrasound do not raise significant safety 

issues. The disadvantage of optical imaging is the limitation of 

penetration depth, particularly at visible wavelengths. SPECT 

is a molecular imaging technique with long half lives, making 

it easy to produce and cheap. However, it lacks spatial and 

temporal resolution, and due to radioactivity, there are safety 

concerns regarding the administration of radioisotopes to 

subjects, especially for serial studies. PET is a nuclear 

medicine imaging technique that produces three-dimensional 

images of body functions. However, its disadvantages include 

requiring cyclotron probes and a high half-life, making it 

prohibitively expensive. However, PET has advantages, 

including high sensitivity. 

For PET, SPECT, scintigraphy, and optical imaging, cytokines, 

receptor ligands, and antibodies are frequently utilized as 

molecular imaging agents. Non-invasive physiological and 

metabolic processes may be seen with PET and SPECT 

imaging, which can be important for medication development. 

The development of affordable, transportable, and user-

friendly imaging systems supports the acceptance of these 

technologies as the gold standard in surgical treatment around 

the globe. AI techniques can automate image interpretation, 

and predict treatment efficacy and patient survival. 
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